University of Wisconsin Digital Collections
Link to University of Wisconsin Digital Collections
Link to University of Wisconsin Digital Collections
History of Science and Technology

Page View

Chambers, Ephraim, 1680 (ca.)-1740 / Cyclopædia, or, An universal dictionary of arts and sciences : containing the definitions of the terms, and accounts of the things signify'd thereby, in the several arts, both liberal and mechanical, and the several sciences, human and divine : the figures, kinds, properties, productions, preparations, and uses, of things natural and artificial : the rise, progress, and state of things ecclesiastical, civil, military, and commercial : with the several systems, sects, opinions, &c : among philosophers, divines, mathematicians, physicians, antiquaries, criticks, &c : the whole intended as a course of antient and modern learning

A - accumulation,   pp. 1-20 PDF (18.6 MB)

Page 10

-.       -- r  -
(, 0 )
4iiutar Xy, or Perfon & tho they cabhot have any real
8ubfiilene without fitch Subjeas, nor the Subjefs without
Thus, alfo, Wbitenefs is an Abftra~f, or abftraff Term;
inafmuch as it does not denote any one white Obje&l, but
that Colour or Idea in the general, wherever found. See
Prom the Knowledge of Ab4fratfs we arrive at that of
Concretes, which is the oppofite Term; Concrete denoting
a General or Abftratf Idea's being attach'd to fome parti-
cular Subjec&, or confider'd as combin'd with fome other
Ideas; as, great Houfe, white Wall. See CONCRETE.
The School Philofophers define an Abflraqf Term from
the Simplicity of its Signification.-Abflrats, according to
them, express only the Forms of Things, or Attributes of
Things, diflinat from the Subjeas whereof they are Forms
or Attributes: as, 7uftice, Crookednefs, &c.-They diflin-
guil 'em into divers Kinds; Metaphyfical, as Humanity;
Logical, as Whitenefs; and Pyfical, as Life, in refpea of
an Animal.
All our fimple Ideas, fays Mr. Locke, have abjlragl, as
well as concrete Names; as, Wbitenefs, white; Sweetnefs,
fweet, &c.
The like alfo holds in our Idea of Modes, and Relations;
as, Reftice, jflt; Equality, equal; &c.
But as to our Ideas of Subfiances, we have very few ab-
ftratf Names at all-Thofe few that the Schools have forg-
ed, as Animalitas, Humanitas, &c. hold no Proportion with
the infinite Number of Names of Subflances ;Wand could
never get admittance into common Ufe, or obtain the Li-
cence of publick Approbation : which feems to intimate a
Confeffion of Mankind, that they have no Ideas of the real
Effences of Subfilances; fince they have not Names for fuch
It was only the Doctrine of Subtlantial Forms, and the Con-
fidence of miflaken Pretenders to a Knowledge they had
not, which firft coined, and then introduced Animalitas,
Llumainitas, and the like; which yet went very little farther
than their own Schools, and could never get to be current
among underfianding Men. See SUBSTANCE.
But the Reality and Exiftence of all dbflraa Ideas, and
of any fuch Faculty in the Mind as Abflraaion, has of late
been controverted. See the Article ABSTRACTION.
In effe&, if there were any fuch Things as Abftra~ts,
bjlraa ~Qalities, &c. we don't fee how they could be de-
flroy'd; they mufi be permanent and immutable: For that
which defiroys the white warm Flame, cou'd not reach the
Whiuenefs or the Warmth: That which defiroys the figu-
red, moving, folid Ball, could not hurt the Figure, Motion,
Solidity, Uic.-Abflrat Ideas, in fine, feem to tend to Sub-
f1antial Forms. See Subflantial FORM.
ABSTRACT is alfo extended to divers other Things, in
refpea of their Purity, Simplicity, Subtility, ec.- In this
Senfe, we fay,
ABSTEACT Matbematicks, are thofe Branches of Mathe-
matical Learning, which confider Quantity and its Affedions,
fimply, and absoluteiy. See QUANTITY, and MATHEMA-
Such are Aritbmetic, Algebra, Geometry,, Trigonometry,
and Analyticks. See ARITHMETIC, ALGEBRA, GEoMlE-
TRY, E.c.
They are thus denominated, in oppofition to Mixt Ma-
thematicks; where the fimple and abflraaed Properties and
Relations of Quantity deliver'd in the former, are applied
to fenfible Objeds; and by that means become intermix'd
with Phyfical Confiderations-Such are Hydroftatics, Op-
tics, Navigation, &c. where Water, Light, &c. are con-
In the like Senfe fome Authors fpeak of Abflratl Num-
bers; meaning no more thereby than Numbers, or Affem-
blages of Unities, confider'd in themselves, and not appli-
ed to denote any Collefdions of particular forts of Things. See
ABSTRACT is alfo ufed in Matters of Literature, for a
compendious View, or Epitome of a larger Work. See EPI-
An Abflraa is fuppofed to be a degree fhorter, and more
fuperficial than an Abridgment. See ABRIDGMENT.
ABSTRACTION, an Operation of the Mind, whereby
we feparate Things naturally conjund, or exilling together;
and form and confider Ideas of Things thus Separated. See
The Faculty of, lands direcfly oppofite to
that of Com pounding-By Compofition we con fider thofe
Things together, which in reality are not join'd together in
one Exiftence.  And by Ahflra~fion, we confider thofe
Things Separately and apart, which in reality do not exifi
Abftraffion is chiefly employ'd thefe three ways-Firff,
when the Mind confiders any one Part of a Thing, in fome
refpefs diffindl from the Whole; as a Man's Arm, without
the Confideration of the reft of his Body.
Secondly, when we confider the Mode of any Subftance,
omitting the Subfilance it felf; or when we Separately confi-
der feveral Modes which fubfilt together in one Subjec& See
This .4bJlratfion the Geometricians make ufe of, when
they confider the Length of a Body Separately, which they
call a Line; omitting the Confideration of its Breadth and
Thirdly, it is by Ab4fraeiion that the Mind 'frames gene-
ral or univerfal Ideas; omitting the Modes and Relations
of the particular Objeas whence they are form'd.-Thus
when we would underiland a thinking Being in general, we
gather from our Self-confcioufnefs what it is to Think; and
omitting the Confideration of thofe Things which have a
peculiar Relation to our own Mind, or to the human Mind,
we think of a thinking Being in general.
Ideas fram'd thus, which are what we properly call Ab-
ftraH Idcas, become general Reprefentatives of all Objeffs
of the fame Kind; and their Names applicable to whatever
exifis conformable to fuch Ideas.-Thus, the Colour that we
receive from Chalk, Snow, Milk, Efc. is a Reprefentative
of all of that Kind ; and has a Name given it, Whitenefs,
which fignifies the fame Quality, wherever found or ima-
gin'd. See GENERAL.
'Tis this lafi Faculty, or Power of Alfiraaing, according
to Mr. Locke, that makes the great Difference between Mao
and Brutes ; even thofe latter mull be allowed to heave fomo
fhare of'Reafon: That they really reafon in fome Cafes,
feems almoll as evident as that they have Senfe ; but 'tis
only in'particular Ideas. They are tyed up to thofe narrow
Bounds ; and do not feem to have any Faculty of enlarging
them by 4bftratqion.  Ffay on Hluman Uaderfianding,
L.III. c. 3.
Such is the Doctrine of AbflraC1 Ideas, under the Im-
provements of that excellent Author. In effca, 'tis the
Ilanding Opinion, that the Mind has fuch a Power or Faculty
of framing AI'ra&l Ideas or Notions of Things; and on Fuch
very Ideas do a great part of the Writings of Philofophers
turn. Thefe are fuppofed in all their Syflems; and without
them there would be nothing done.-They are more efpeci-
ally reputed the Objea of Logick and Metaphyficks, and all
that pafes under tb1e Notion of the moil abjiratled and fub-
lime Learning.
Yet has a late eminent and ingenious Author, Dean fferke-
iey, conteffed the Reality of any fuch Ideas ; and gone a
good way towards overturning the whole Syftem, and confe-
quently towards fetting our Philofophy on a new footing.
The Qualities or Modes of Things, 'tis on all hands a-
greed, do never really exifi apart, and Separated from all
others ; but are conflantly mix'd and combin'd together, fe-
veral in the fame Objec..-But, fay the Philofophers, the
Mind being able to confider each Quality fingly, or abftrac-
ted from other Qualities with which it is united, does by that
means frame to it felf .4bflratl Ideas, of a different Nature
and Kind from the fenfible ones.
For an Example hereof, The Eye perceiving an Obje&t
extended, coloured, and moved, refolves this Compound
Idea, into its fimple, conflituent ones; and viewing each
by it felf, exclufive of the refll, frames Abftraci Ideas of
Extenfion, Colour, and Motion themfelves, or in their own
-Nature.-Not that it is poffible for fuch Colour and Motion
to exili without Extenfion; but only that the Mind can
frame to it felf, by Abjlradion, the Idea of Colour exclufive
of Extenfion; and of Motion, exclufive both of Colour and
Again, fay the fame Philofophers, the Mind having ob-
ferv'd that in the particular Extenfions perceived by Senfe,
there is fomething common, and alike in all ; and fome
other things peculiar ; as this, or that Figure or Magnitude,
which diffinguilh them one from another; it can confider
apart, or fingle out by tit felf, what is common; making
thereof a general abflrad Idea of Extenfion, which is nei-
ther Line, Surface, nor Solid, nor has any Figure or Afaig-
nitude, but is an Idea entirely prefcinded from 'em all.-
So, likewife, by leaving out of the feveral Colours perceived
by Senfe, that which diflinguiflies them from one another,
and only retaining what is common to all, it makes an Idea
of Colour in the AftraaC, which is neither red, nor blue,
nor white, &c.-After the fame manner, by considering Mo-
tion abflracledly, both from the Body moved, and from the
Figure it defcribes, and all particular Direffions, and Velo-
cities; an Abflraai Idea of Moticn is framed, which equally
correfponds to all Motions whatever.
They add, that as the Mind frames AbJfraa Ideas of
Qualities or Modes ; fo does it, by the fame Faculty, attain
AbflraSf Ideas of the more compound Beings, which include
many coexiflent Quaiities.-For an Example-Having
obferv'd that Peter, _7ames, .7obn, &c. refemble each other
in Shape, and other Qualities; we can leave out of the Com-
plex Idea we had of 'Peter, 7ames, &c. that which is pe-
culiar to each, retaining only what is common to all, and fo
make an Ablcraaq Idea, wherein all the Particulars equally
A 13
7 . , . r
 Few ] .
1. A

Go up to Top of Page